0.5 m having equal cross-sectional areas are joined end to end. The composite wire is stretched by a certain load which stretches the copper wire by 1 mm. If the Young's modulii of copper and steel are respectively 1.0 × 10¹¹ Nm⁻ 2 and 2.0×10^{11} Nm $^{-2}$, the total extension of the composite wire is: [Online April 23, 2013]

1.75 mm (b) 2.0 mm (c) 1.50 mm (d) 1.25 mm

A copper wire of length 1.0 m and a steel wire of length

$$\Delta L_s = \frac{0.5 \times 10^{-3}}{2} = 0.25 \text{ mm}$$

14. (d) $Y_c \times (\Delta L_c / L_c) = Y_s \times (\Delta L_s / L_s)$

 $\Rightarrow 1 \times 10^{11} \times \left(\frac{1 \times 10^{-3}}{1}\right) = 2 \times 10^{11} \times \left(\frac{\Delta L_s}{0.5}\right)$

Therefore, total extension of the composite wire

 $= \Delta L_c + \Delta L_s$ = 1 mm + 0.25 m = 1.25 m

=
$$\Delta L_c + \Delta L_s$$

= 1 mm + 0.25 m = 1.25 m